The generalized Schoenflies theorem

نویسنده

  • Andrew Putman
چکیده

The generalized Schoenflies theorem asserts that if φ ∶ Sn−1 → S is a topological embedding and A is the closure of a component of Sn∖φ(Sn−1), then A ≅ D as long as A is a manifold. This was originally proved by Barry Mazur and Morton Brown using rather different techniques. We give both of these proofs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Combinatorial Schoenflies Conjecture

Introduction. The combinatorial version of the Schoenflies conjecture in dimension n states: A combinatorial (n — l)-sphere on a combinatorial «-sphere decomposes the latter into two combinatorial ncells. The cases n = 1, 2 are obvious, the case n = 3 was solved by J. W. Alexander [l], see also W. Graeub [5], and E. Moise [8]. Nothing is known for n>3 (compare J. F. Hudson and E. C. Zeeman in [...

متن کامل

A Schoenflies Extension Theorem for a Class of Locally Bi-lipschitz Homeomorphisms

In this paper we prove a new version of the Schoenflies extension theorem for collared domains Ω and Ω in Rn: for p ∈ [1, n), locally bi-Lipschitz homeomorphisms from Ω to Ω with locally p-integrable, second-order weak derivatives admit homeomorphic extensions of the same regularity. Moreover, the theorem is essentially sharp. The existence of exotic 7-spheres shows that such extension theorems...

متن کامل

AN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM

n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015